RAS BiologyРастительные ресурсы Vegetation Resources

  • ISSN (Print) 0033-9946
  • ISSN (Online) 3034-5723

Breeding System of Thymus mongolicus (Lamiaceae)

PII
10.31857/S0033994623020061-1
DOI
10.31857/S0033994623020061
Publication type
Status
Published
Authors
Volume/ Edition
Volume 59 / Issue number 2
Pages
129-136
Abstract
Abstract —Thymus mongolicus (Ronniger) Ronniger (Lamiaceae) is a valuable medicinal and aromatic plant. T. mongolicus is the implicitly polycentric dwarf shrub widely distributed in different environments of Tuva. The breeding system of T. mongolicus was studied in three steppe and meadow habitats. Statistically significant differences between bisexual and pistillate flowers of T. mongolicus were established based on three morphological features of the flower: the length of the upper lip of the corolla and the length of stamen filament of the upper and lower stamens (p 0.0001–0.016). The length of the upper lip of corolla of the bisexual flower is 1.3 times longer than that of the pistillate flower; the lengths of stamen filaments of upper and lower stamens of bisexual flowers are 3.7 and 4.1 times longer (respectively) than the length of staminodes of pistillate flowers. The stamens of the pistillate flowers are underdeveloped and do not form fertile pollen. The frequency of females occurrence in coenopopulations is insignificant (2.1–3.4% of the total number of generative individuals), and females are absent in some phytocoenoses. Reproduction of T. mongolicus occurs both by seed and vegetatively. The distribution of T. mongolicus individuals by ontogenetic groups showed that both pregenerative individuals (33.0–38.1% of the total number of individuals) and generative individuals (31.2–63.7%) are well represented in cenopopulations. Analysis of the ratio of genets and ramets in the steppe petrophyte coenopopulation showed the significant predominance of the vegetative individuals in all ontogenetic groups: in general, there are 3.7 times more ramets than genets. In the meadow coenopopulation, the germination of seeds and the spread of generative individuals is prevented by the relatively high total projective cover of the herbage. It can be assumed that the low occurrence of T. mongolicus females is a-ssociated with a low seed renewal and specificity of offspring inheritance.
Keywords
<i>Thymus mongolicus</i> ценопопуляции гинодиэция соотношение полов генеты раметы Республика Тыва
Date of publication
01.04.2023
Year of publication
2023
Number of purchasers
0
Views
46

References

  1. 1. Дикорастущие полезные растения России. 2001. СПб. 663 с.
  2. 2. Dommée B., Assouad M.W., Valdeyron G. 1978. Natural selection and gynodioecy in Thymus vulgaris L. – Bot. J. Linn. Soc. 77(1): 17–28. https://doi.org/10.1111/j.1095-8339.1978.tb01369.x
  3. 3. Гогина Е.Е. 1990. Изменчивость и формообразование в роде Тимьян. М. 208 с.
  4. 4. Thompson J.D., Rolland A.G., Prugnolle F. 2002. Genetic variation for sexual dimorphism in flower size within and between populations of gynodioecious Thymus vulgaris. – J. Evol. Biol. 15(3): 362–372. https://doi.org/10.1046/j.1420-9101.2002.00407.x
  5. 5. Гогина Е.Е. 1975. Род чабрец (тимьян) – Thymus L. – В кн.: Биологическая флора Московской области. Вып. 2. С. 137–168.
  6. 6. Manicacci D., Atlan A., Rossello J.A.E., Couvet D. 1998. Gynodioecy and reproductive trait variation in three Thymus species (Lamiaceae). – Int. J. Plant Sci. 159(6): 948–957. https://doi.org/10.1086/314085
  7. 7. Гордеева Н.И., Пшеничкина Ю.А. 2013. Особенности половой дифференциации Thymus marschallianus (Lamiaceae) в условиях лесостепи Новосибирской области. – Раст. ресурсы. 49(3): 297–303. https://www.elibrary.ru/item.asp?id=19139453
  8. 8. Демьянова Е.И. 2016. Половая структура популяций некоторых гинодиэцичных видов Thymus L. (Lamiaceae). – Вестник Пермского ун-та. Серия: Биология. 2: 96–101.
  9. 9. Belhassen E., Dommée B., Atlan A., Gouyon P.H., Pomente D., Assouad M.W., Couvet D. 1991. Complex determination of male sterility in Thymus vulgaris L.: genetic and molecular analysis. – Theor. Appl. Genet. 82(2): 137–143. https://doi.org/10.1007/BF00226204
  10. 10. Stakelien Ė.V., Ložien Ė.K. 2014. Gynodioecy in Thymus pulegioides L., T. serpyllum L., and their hybrid T. × oblongifolius Opiz (Lamiaceae): Flower size dimorphism, female frequency, and effect of environmental factors. – Plant Biosyst. 148(1): 49–57. https://doi.org/10.1080/11263504.2012.756435
  11. 11. Talovskaya E.B., Cheryomushkina V.A. 2017. State of Thymus coenopopulations in the Southern Siberia. – Russ. J. Ecosyst. Ecol. 2(3). https://doi.org/10.21685/2500-0578-2017-3-4
  12. 12. Годин В.Н. 2011. Половой полиморфизм видов растений подкласса Lamiidae в Сибири. Обзор литературы. – Раст. мир Азиатской России. 2(8): 49–53. https://www.elibrary.ru/item.asp?id=17097627
  13. 13. Колегова Е.Б. 2012. Жизненные формы видов рода Thymus L. в Республике Хакасия. – В сб.: Растительный мир и его охрана: Материалы международной научной конференции, посвященной 80-летию Института ботаники и фитоинтродукции. Алматы: LEM. С. 380–381.
  14. 14. Talovskaya E.B., Komarevtseva E.K. 2021. Development of the dwarf shrub Thymus mongolicus (Lamiaceae) in the conditions of Southern Siberia. – BIO Web Conf. 31: 00027. https://doi.org/10.1051/bioconf/20213100027
  15. 15. Доронькин В.М. 1997. Thymus L. – тимьян, богородская трава. – В кн.: Флора Сибири. Pyrolaceae – Lamiaceae (Labiatae). Новосибирск. Т. 11. С. 205–220.
  16. 16. Клоков М.В. 1954. Род Thymus L. – В кн.: Флора СССР. Под ред. Б.К. Шишкина. М.; Л. Т. 21. С. 470–591.
  17. 17. Гланц С. Медико-биологическая статистика. Перевод с англ. М. 1998. 459 с.
  18. 18. Asikainen E., Mutikainen P. 2003. Female frequency and relative fitness of females and hermaphrodites in gynodioecious Geranium sylvaticum (Geraniaceae). – Am. J. Botany. 90(2): 226–234. https://doi.org/10.3732/ajb.90.2.226
  19. 19. Ценопопуляции растений (основные понятия и структура). 1976. М. 216 с.
  20. 20. Таловская Е.Б., Черемушкина В.А., Асташенков А.Ю., Гордеева Н.И. 2023. Состояние ценопопуляций Thymus mongolicus (Lamiaceae) в зависимости от экологических условий. – Бот. журн. 108(1): 3–12. https://www.elibrary.ru/item.asp?id=50434354
  21. 21. Charlesworth D., Laporte V. 1998. The male-sterility polymorphism of Silene vulgaris: analysis of genetic data from two populations and comparison with Thymus vulgaris. – Genetics. 150(3): 1267–1282. https://doi.org/10.1093/genetics/150.3.1267
  22. 22. McCauley D.E., Olson M.S., Emery S.N., Taylor D.L. 2000. Population Structure Influences Sex Ratio Evolution in a Gynodioecious Plant. – Am. Nat. 155(6): 814–819. https://doi.org/10.1086/303359
  23. 23. Dufaÿ M., Touzet P., Maurice S., Cuguen J. 2007. Modelling the maintenance of male-fertile cytoplasm in a gynodioecious population. – Heredity. 99(3): 349–356. https://www.nature.com/articles/6801009
  24. 24. Mollion M., Ehlers B.K., Figuet E., Santoni S., Lenormand T., Maurice S., Galtier N., Bataillon T. 2018. Patterns of genome-wide nucleotide diversity in the gynodioecious plant Thymus vulgaris are compatible with recent sweeps of cytoplasmic genes. – Genome Biol. Evol. 10(1): 239–248. https://doi.org/10.1093/gbe/evx272
  25. 25. Bailey M.F., Delph L.F. 2007. A field guide to models of sex-ratio evolution in gynodioecious species. – Oikos. 116(10): 1609–1617. https://doi.org/10.1111/j.0030-1299.2007.15315.x
  26. 26. Couvet D., Ronce O., Gliddon C. 1998. The maintenance of nucleocytoplasmic polymorphism in a metapopulation: the case of gynodioecy. – Am. Nat. 152(1): 59–70. https://doi.org/10.1086/286149
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library