- PII
- 10.31857/S0033994624040038-1
- DOI
- 10.31857/S0033994624040038
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 60 / Issue number 4
- Pages
- 48-69
- Abstract
- Seasonal changes in the quantitative characteristics of the apical growth of the stem and lateral branches of different levels of the crown were studied in young Siberian fir (Abies sibirica Ledeb.) trees growing under the forest canopy in Yekaterinburg (Middle Urals, Russia).The analysis of the obtained data included the describing of seasonal growth dynamics, identifying the rhythm signs and determining the degree of air temperature and precipitation influence on the rate of growth processes. In the growth dynamics there were found four stages lasting 2–3 weeks each. There also has been established, that the change in growth rates at the intensive and additional stages occurs quasi-rhythmically. The average numbers of observed oscillations is 4 – at the stem and 4–5 – at the branches and is not dependent on the changes in weather conditions. The oscillation’s period is 8–9 days. It allows refer them to infradian rhythms. The growth of the stem begins one week later than the lateral branches. At the stage of intensive growth stems growth rate overtakes branches. Shoots of branches at one level of the crown are divided into two groups, differing in the degree of oscillation phase coincidence. In these groups fluctuations in growth rates occur in opposite phases. In a quantitatively larger group of branches the apical growth rhythms are synchronous with the rhythms of tree stems. The temperature influence on the onset and the duration of growth stages is stronger than of the precipitation amount. The growth rhythms of the stem and branches have significant similarities. Their nature is associated with the work of endogenous (genetic and hormonal) system of the apical meristem development regulation. The dynamic component of seasonal growth rate changes includes the stage of preliminary shoot growth, on which cells are formed in addition to those already formed during the bud growth phase. Further stages of intensive and additional growth begin. They have an oscillatory character. Apical growth rate oscillations arise due to the synchronicity of the “division-extension” cycles of large groups of cells in the meristem parenchyma. At the stage of shoot growth cessation the number of capable to division cells decreases until proliferation completely stops.
- Keywords
- Abies sibirica морфогенез апикальный рост ствола и ветвей сезонная динамика инфрадианные ритмы скорость роста влияние температуры и осадков
- Date of publication
- 15.12.2024
- Year of publication
- 2024
- Number of purchasers
- 0
- Views
- 55
References
- 1. Luttge U., Hertel B. 2009. Diurnal and annual rhythms in trees. — Trees. 23(4): 683–700. https://doi.org/10.1007/s00468-009-0324-1
- 2. Жуковская Н. В., Быстрова Е. И., Лунькова Н. Ф., Иванов В. Б. 2020. Сравнительный анализ роста корней разных видов растений на клеточном уровне. — Физиология растений. 67(4): 369–377. https://doi.org/10.31857/S0015330320040211
- 3. Ваганов Е. А., Шиятов С. Г. 2005. Дендроклиматические и дендроэкологические исследования в Северной Евразии. — Лесоведение. 4: 18–27. EDN: HSWNEP
- 4. Rossi S., Rathgeber C. B. K., Deslauriers A. 2009 Comparing needle and shoot phenology with xylem development on three conifer species in Italy. — Ann. For. Sci. 66(2): 206. https://doi.org/10.1051/forest/2008088
- 5. Moser L., Fonti P., Büntgen U., Esper J., Luterbacher J., Franzen J., Frank D. 2010. Timing and duration of European larch growing season along altitudinal gradients in the Swiss Alps. — Tree Physiol. 30(2): 225–233. https://doi.org/10.1093/treephys/tpp108
- 6. Cuny H. E., Rathgeber C. B., Lebourgeois F., Fortin M., Fournier M. 2012. Life strategies in intra-annual dynamics of wood formation: example of three conifer species in a temperate forest in north-east France. — Tree Physiol. 32(5): 612–625. https://doi.org/10.1093/treephys/tps039
- 7. Zhang Y., Jiang Y., Wen Y., Ding X., Wang B., Xu J. 2019. Comparing primary and secondary growth of co-occurring deciduous and evergreen conifers in an Alpine habitat. — Forests. 10(7): 574. https://doi.org/10.3390/f10070574
- 8. Cook E. R., Kairiukstis L. A. 1990. Methods of Dendrochronology. Applications in the Environmental Sciences. Dordrecht. 394 p. http://dx.doi.org/10.1007/978-94-015-7879-0
- 9. Schweingruber F. H., Aellen-Rumo K., Weber U., Wehrli U. 1990. Rhythmic growth fluctuations in forest trees of Central Europe and the Front Range in Colorado. — Trees. 4(2): 99–106. https://doi.org/10.1007/BF00226072
- 10. Ваганов Е. А., Смирнов В. В., Терсков И. А. 1975. О возможности определения скорости сезонного роста ствола в толщину и изменений в водном режиме дерева по фотометрической кривой. — Экология. 2: 45–53.EDN: NDIQYD
- 11. Ваганов Е. А., Шашкин А. В. 2000. Рост и структура годичных колец хвойных. Новосибирск: Наука. 232 с.
- 12. Михалевская О. Б. 1987. Ритмичность процессов роста и морфогенеза побегов в роде Quercus L. — В кн.: Морфогенез и ритм развития высших растений. М.: Изд-во МГПИ. С. 33–38.
- 13. Михалевская О. Б. 2008. Ритмы роста на разных этапах морфогенеза побега у древесных растений. — Онтогенез. 39(2): 85–93. http://ontogenez.org/archive/2008/2/Mihalevskaya_2008_2.pdf
- 14. Herrmann S., Recht S., Boenn M., Feldhahn L., Angay O., Fleischmann F., Tarkka M. T., Grams T. E. E., Buscot F. 2015. Endogenous rhythmic growth in oak trees is regulated by internal clocks rather than resource availability. — J. Exp. Bot. 66(22): 7113–7127. https://doi.org/10.1093/jxb/erv408
- 15. Hilton R. J., Khatamian H. 1973. Diurnal variation in elongation rates of roots of woody plants. — Can. J. Pl. Sci. 53(3): 699–700. https://doi.org/10.4141/cjps73-138
- 16. Ding X., Jiang Y., Xue F., Zhang Y., Wang M., Kang M., Xu H. 2021. Intra-annual growth dynamics of Picea meyeri needles, shoots, and stems on Luya Mountain, North-central China. — Trees. 35(2): 637–648. https://doi.org/10.1007/s00468-020-02065-9
- 17. Vince-Prue D., Clapham D., Ekberg I., Norell L. 2001. Circadian timekeeping for the photoperiodic control of budset in Picea abies (Norway spruce) seedlings. — Biol. Rhythm Res. 32(4): 479–487. https://doi.org/10.1076/brhm.32.4.479.1336
- 18. Gyllenstrand N., Karlgren A., Clapham D., Holm K., Hall A., Gould P., Källman Th., Lagercrantz U. 2014. No time for spruce: rapid dampening of circadian rhythms in Picea abies (L. Karst). — Pl. Cell Physiol. 55(3): 535–550. https://doi.org/10.1093/pcp/pct199
- 19. Lanner R. M. 2017. Primordium initiation drives tree growth. — Ann. For. Sci. 74: 11. https://doi.org/10.1007/s13595-016-0612-z
- 20. Schiestl-Aalto P., Nikinmaa E., Mäkelä A. 2013.Duration of shoot elongation in Scots pine varies within the crown and between years. — Ann. Bot. 112(6): 1181–1191. https://doi.org/10.1093/aob/mct180
- 21. Huang J. G., Deslauriers A., Rossi S. 2014. Xylem formation can be modeled statistically as a function of primary growth and cambium activity. — New Phytol. 203(3): 831–841. https://doi.org/10.1111/nph.12859
- 22. Antonucci S., Rossi S., Deslauriers A., Lombardi F., Marchetti M., Tognetti R. 2015. Synchronisms and correlations of spring phenology between apical and lateral meristems in two boreal conifers. — Tree Physiol. 35(10): 1086–1094. https://doi.org/10.1093/treephys/tpv077
- 23. Begum S., Nakaba S., Yamagishi Y., Oribe Y., Funada R. 2013.Regulation of cambial activity in relation to environmental conditions: understanding the role of temperature in wood formation of trees. — Physiol. Plant. 147(1): 46–54. https://doi.org/10.1111/j.1399-3054.2012.01663.x
- 24. Salminen H., Jalkanen R. 2007. Intra-annual height increment of Pinus sylvestris at high latitudes in Finland. — Tree Physiol. 27(9): 1347–1353. https://doi.org/10.1093/treephys/27.9.1347
- 25. Aloni R. 2013.The role of hormones in controlling vascular differentiation. — In: Cellular aspects of wood formation. Plant Cell Monographs, 20. P. 99–139. https://doi.org/10.1007/978-3-642-36491-4_4
- 26. Sundberg B., Uggla C. 1998. Origin and dynamics of indoleacetic acid under polar transport in Pinus sylvestris. — Physiol. Plant. 104(1): 22–29. https://doi.org/10.1034/j.1399-3054.1998.1040104.x
- 27. Little C. H. A., MacDonald J. E. 2003. Effects of exogenous gibberellin and auxin on shoot elongation and vegetative bud development in seedlings of Pinus sylvestris and Picea glauca. — Tree Physiol. 23(2): 73–83. https://doi.org/10.1093/treephys/23.2.73
- 28. MacDonald J. E., Little C. H. 2006. Foliar application of GA3 during terminal long-shoot bud development stimulates shoot apical meristem activity in Pinus sylvestris seedlings. — Tree Physiol. 26(10): 1271–1276. https://doi.org/10.1093/treephys/26.10.1271
- 29. Jackson S. D. 2009. Plant responses to photoperiod. — New Phytol. 181(3): 517–531. https://doi.org/10.1111/j.1469-8137.2008.02681.x
- 30. Ren P., Rossi S., Gricar J., Liang E., Cufar K. 2015. Is precipitation a trigger for the onset of xylogenesis in Juniperus przewalskii on the north-eastern Tibetan Plateau? — Ann. Bot. 115(4): 629–639. https://doi.org/10.1093/aob/mcu259
- 31. Zhang J., Gou X., Pederson N., Zhang F., Niu H., Zhao S., Wang F. 2018. Cambial phenology in Juniperus przewalskii along different altitudinal gradients in a cold and arid region. — Tree Physiol. 38(6): 840–852. https://doi.org/10.1093/treephys/tpx160
- 32. Скупченко В. Б. 2019. Клеточный рост основной паренхимы стебля в морфогенезе побега Piceа abies (Pinaceae). — Раст. рес. 55(2): 195–212. https://doi.org/10.1134/S0033994619020092
- 33. Афонин А. А., Зайцев С. А. 2016. Цикличность среднесуточного радиального прироста несущих побегов ивы белой (Salix alba L.) в условиях Брянского лесного массива. — Известия высших учебных заведений. Лесной журнал. 3: 66–76. https://doi.org/10.17238/issn0536-1036.2016.3.66
- 34. Афонин А. А. 2019a. Сезонная динамика нарастания побегов ивы корзиночной (Salix viminalis). — Известия высших учебных заведений. Поволжский регион. Естественные науки. 4(28): 26–34. https://doi.org/10.21685/2307-9150-2019-4-3
- 35. Афонин А. А. 2019b. Ритмичность линейного прироста однолетних побегов ивы трехтычинковой. — Современная наука: актуальные проблемы теории и практики. Серия: Естественные и технические науки. 1: 10–16. EDN: ZABIYXhttp://www.nauteh-journal.ru/index.php/3/2019/№1/80bc8b4e-f1ee-4e42-93a0-20d461002813?lang=ru_RU
- 36. Афонин А. А. 2021. Эпигенетическая изменчивость структуры сезонной динамики развития побегов ивы трехтычинковой (Salix triandra, Salicaceae). — Вестник Оренбургского государственного педагогического университета. 2(38): 1–14. https://doi.org/10.32516/2303-9922.2021.38.1
- 37. Шавнин С. А., Монтиле А. А., Семкина Л. А., Монтиле А. И. 2023. Сезонная динамика роста побегов у растений Forsythia ovata Nakai: ритмичность апикального и радиального роста. — Журнал общей биологии. 84(3): 229–240.https://doi.org/10.31857/S0044459623020057
- 38. Шавнин С. А., Монтиле А. А., Тишкина Е. А., Епанчинцева О. В. 2023. Сезонная динамика и ритмичность роста побегов растений Salix ’Bullata’. — Аграрный вестник Урала. 23(12): 94–110. https://elibrary.ru/item.asp?id=56661423
- 39. Shi B., Vernoux T. 2022. Hormonal control of cell identity and growth in the shoot apical meristem. — Cur. Op. Plant Biol. 65: 102111. https://doi.org/10.1016/j.pbi.2021.102111
- 40. Torres-Martínez H. H., Hernández-Herrera P., Corkidi G., Dubrovsky J. G. 2020.From one cell to many: Morphogenetic field of lateral root founder cells in Arabidopsis thaliana is built by gradual recruitment. — PNAS. 117: 20943–20949. https://doi.org/10.1073/pnas.2006387117
- 41. Torres-Martínez H. H., Napsucialy-Mendivil S., Dubrovsky J. G. 2022. Cellular and molecular bases of lateral root initiation and morphogenesis. — Cur. Op. Plant Biol. 65: 102115. https://doi.org/10.1016/j.pbi.2021.102115
- 42. Srivastava L. M. 2002. Plant growth and development. Hormones and the environment. Oxford. 772 p.
- 43. Xue Z., Liu L., Zhang C. 2020. Regulation of shoot apical meristem and axillary meristem development in plants. — Int. J. Mol. Sci. 21(8): 2917. https://doi.org/10.3390/ijms21082917
- 44. Лутова Л. А., Ежова Т. А., Додуева И. Е., Осипова М. А. 2010. Генетика развития растений: для биологических специальностей университетов. 2-е изд. перераб. и доп. СПб.: Изд-во Н-Л. 432 с.
- 45. Творогова В. Е., Осипова М. А., Додуева И. Е., Лутова Л. А. 2012. Взаимодействие транскрипционных факторов и фитогормонов в регуляции активности меристем у растений. — Экологическая генетика. 10(3): 28–40. https://elibrary.ru/item.asp?id=18844581
- 46. Kuehny J. S., Miller W. B., Decoteau D. R. 1997. Changes in carbohydrate and nitrogen relationships during episodic growth of Ligustrum japinicum Thunb. — J. Am. Soc. Hort. Sci. 122(5): 634–641. https://doi.org/10.21273/jashs.122.5.634
- 47. McCown B. H. 2000. Special symposium: In vitro plant recalcitrance. Recalcitrance of woody and herbaceous perennial plants: Dealing with genetic predeterminism. — In Vitro Cell. Den. Biol. Plant. 36(3): 149–154. https://doi.org/10.1007/s11627-000-0030-6
- 48. Barthélémy D., Caraglio Y. 2007. Plant architecture: a dynamic, multilevel and comprehensive approach to plant form, structure and ontogeny. — Ann. Bot. 99(3): 375–407. https://doi.org/10.1093/aob/mcl260
- 49. Smyth D. R., Bowman J. L., Meyerowitz E. M. 1990. Early flower development in Arabidopsis. — Plant Cell. 2(8): 755–67. PMID: 2152125; PMCID: PMC159928; https://doi.org/10.1105/tpc.2.8.755
- 50. Kinoshita A., Vayssières A., Richter R., Sang Q., Roggen A., van Driel A. D., Smith R. S., Coupland G. 2020. Regulation of shoot meristem shape by photoperiodic signaling and phytohormones during floral induction of Arabidopsis. — eLife. 9: e60661. https://doi.org/10.7554/eLife.60661
- 51. Уранов А. А. 1975. Возрастной спектр фитоценопопуляций как функция времени и энергетических волновых процессов. — Биологические науки. 2: 7–34.
- 52. Юркевич И. Д., Голод Д. С., Ярошевич Э. П. 1980. Фенологические исследования древесных и травянистых растений (методическое пособие). Мн.: Наука и техника. 88 с.
- 53. Desprez-Loustau Ml., Dupuis F. 1994. Variation in the phenology of shoot elongation between geographic provenances of maritime pine (Pinus pinaster) — implications for the synchrony with the phenology of the twisting rust fungus, Melampsora pinitorqua. — Ann. For. Sci. 51(6): 553–568. https://doi.org/10.1051/forest:19940602
- 54. Молчанов А. А., Смирнов В. В. 1967. Методика изучения прироста древесных растений. М.: Наука. 95 с.
- 55. Архив погоды в Екатеринбурге. https://rp5.ru/Погода_в_Екатеринбурге
- 56. Скупченко В. Б. 2022. Морфогенез и рост вегетативного побега Pseudotsugamenziesii (Pinaceae), интродуцированной в Санкт-Петербурге. — Раст. рес. 58(1): 43–57. https://elibrary.ru/item.asp?id=48050563
- 57. Медведев С. С., Шарова Е. И. 2014. Биология развития растений. Том 2. Рост и морфогенез. Учебник. Нижневартовск: Изд-во Нижневарт. Гос. ун-та. 235 с.
- 58. Vernoux T., Besnard F., Godin C. 2021. What shoots can teach about theories of plant form. — Nat. Plants. 7(6): 716–724. https://doi.org/10.1038/s41477-021-00930-0
- 59. Yang W., Cortijo S., Korsbo N., Roszak P., Schiessl K., Gurzadyan A., Wightman R., Jönsson H., Meyerowitz E. 2021. Molecular mechanism of cytokinin-activated cell division in Arabidopsis. — Science. 371(6536): 1350–1355. https://doi.org/10.1126/science.abe2305
- 60. Ivanov V., Dubrovsky J. 1997. Estimation of the cell-cycle duration in the root apical meristem: a model of linkage between cell-cycle duration, rate of cell production, and rate of root growth. — Int. J. Plant Sci. 158(6): 757-763. https://doi.org/10.1086/297487