RAS BiologyРастительные ресурсы Vegetation Resources

  • ISSN (Print) 0033-9946
  • ISSN (Online) 3034-5723

Comparative analysis of fatty acid composition of lipids in seeds of various Salvia (Lamiaceae) species

PII
10.31857/S0033994624020072-1
DOI
10.31857/S0033994624020072
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 60 / Issue number 2
Pages
104-112
Abstract
The article presents the results of a study of the fatty acid composition of seed lipids in some Salvia L. (Lamiaceae) species introduced in the Central Botanical Garden of the National Academy of Sciences of Belarus. Significant variability in the content of fatty acids in the seed lipids of the studied sage species was observed: the average content of palmitic acid was about 7% with the only exception being S. tomentosa Mill. (0.12%). The seeds of S. aethiopis L., S. sclarea L., S. deserta Schang и S. pratensis L. are rich in α-linolenic acid (more than 40%). The content of linoleic acid ranges from 17.3% in S. aethiopis to 64% in S. officinalis L. and S. tomentosa. It has been established that the nature of the fatty acid ratio is species-specific. The contribution of species to the variability of essential fatty acids ranged from 62 to 98% and, therefore, the influence of meteorological conditions ranged from 2 to 38%.
Keywords
Salvia жирнокислотный состав линолевая кислота α-линоленовая кислота соотношение омега-6 и омега-3 жирных кислот климатические условия
Date of publication
15.05.2024
Year of publication
2024
Number of purchasers
0
Views
31

References

  1. 1. Gharehbagh H. J., Ebrahimi M., Dabaghian F., Mojtabaviet S., Hariri R., Saeedi M., Ali Faramarzi M., Khanavi M. 2023. Chemical composition, cholinesterase, and α-glucosidase inhibitory activity of the essential oils of some Iranian native Salvia species. — BMC Complementary Medicine and Therapies. 23: 184. https://doi.org/10.1186/s12906-023-04004-w
  2. 2. Walker J. B., Sytsma K. J. 2007. Staminal Evolution in the Genus Salvia (Lamiaceae): Molecular Phylogenetic Evidence for Multiple Origins of the Staminal Lever. — Annals of Botany. 100(2): 375—391. https://doi.org/10.1093/aob/mcl176
  3. 3. Plants of the World Online. Salvia L. https://powo.science.kew.org/taxon/urn: lsid: ipni.org: names:30000096-2
  4. 4. WFO Plant List. Salvia L. https://wfoplantlist.org/taxon/wfo-4000033888-2023-12?page=1&hide_syns=true
  5. 5. Plants for a future. Search for: Salvia https://pfaf.org/USER/DatabaseSearhResult.aspx
  6. 6. European Pharmacopoeia tenth edition. 2019. Council of Europe. Strasbourg. 4318 р.
  7. 7. The Japanese pharmacopoeia eighteenth edition. English version. 2021. The Ministry of health, labour and welfare. 2806 p.
  8. 8. Государственная фармакопея Республики Беларусь II. 2012. Т. 2. Контроль качества вспомогательных веществ и лекарственного растительного сырья. Молодечно. 472 с.
  9. 9. Институт фармакопеи и стандартизации в сфере обращения лекарственных средств. Шалфея лекарственного листья Salviae officinalis folia. https://pharmacopoeia.regmed.ru/pharmacopoeia/izdanie-14/2/2-5/shalfeya-lekarstvennogo-listya-salviae-officinalis-folia/
  10. 10. Лайковская И. В., Титок В. В., Леонтьев В. Н., Акулович И. Л. 2004. Генетический полиморфизм жирнокислотного состава липидов семян масличных культур. — Труды Белорусского государственного технологического университета. Сер. IV. Химия и технология органических веществ. 12: 179—183.
  11. 11. Welch R. W. 1977. A micro-method for the estimation of oil content and composition in seed crops. — Journal of the Science of Food and Agriculture. 28(7): 635—638. https://doi.org/10.1002/jsfa.2740280710
  12. 12. Moazzami Farida S. H., Radjabian T., Ranjbar M., Salami S. A., Rahmani N., Ghorbani A. 2016. Fatty acid patterns of seeds of some Salvia species from Iran – A Chemotaxonomic Approach. — Chemistry and Biodiversity. 13(4): 451—458. https://doi:10.1002/cbdv.201500147
  13. 13. Субботина М. А. 2009. Факторы, определяющие биологическую ценность растительных масел и жиров. — Вестник Кузбасского государственного технического университета. 2(72): 86—90.
  14. 14. Djuricic I., Calder P. C. 2021. Beneficial outcomes of Omega-6 and Omega-3 polyunsaturated fatty acids on human health: an update for 2021. — Nutrients. 13(7). https://doi:10.3390/nu13072421
  15. 15. Harris W. S., Mozaffarian D., Rimm E., Kris-Etherton P., Rudel L. L., Appel L. J., Sacks F. 2009. Omega-6 Fatty Acids and Risk for Cardiovascular Disease: A science advisory from the american heart association nutrition subcommittee of the council on nutrition, physical activity, and metabolism; council on cardiovascular nursing; and council on epidemiology and prevention. — Circulation. 119(6): 902—907. https://doi:10.1161/circulationaha.108.191627
  16. 16. Johnson G. H., Fritsche K. 2012. Effect of Dietary Linoleic Acid on Markers of Inflammation in Healthy Persons: A systematic review of randomized controlled trials. — Journal of the academy of nutrition and dietetics. 112(7): 1029—1041. https://doi:10.1016/j.jand.2012.03.029
  17. 17. DiNicolantonio J. J., O’Keefe J. H. 2018. Omega-6 vegetable oils as a driver of coronary heart disease: the oxidized linoleic acid hypothesis. — Open Heart. 5(2). https://doi:10.1136/openhrt-2018-000898
  18. 18. ICD and ATC codes. https://icdcode.info/russian/atc/code-c10ax.html
  19. 19. ICD and ATC codes. https://icdcode.info/deutsch/search/p0/s9/Linols%C3%A4ure
  20. 20. ICD and ATC codes. https://icdcode.info/russian/atc/code-d02ac.html
  21. 21. Погода и климат. Погода в Минске. http://www.pogodaiklimat.ru/forecast/26850.htm
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library