RAS BiologyРастительные ресурсы Vegetation Resources

  • ISSN (Print) 0033-9946
  • ISSN (Online) 3034-5723

Chemical composition and biological activity of wild Linum (Linaceae) Species

PII
10.31857/S0033994624010026-1
DOI
10.31857/S0033994624010026
Publication type
Review
Status
Published
Authors
Volume/ Edition
Volume 60 / Issue number 1
Pages
21-53
Abstract
The review presents data from literature sources on the component composition and biological activity of aboveground and underground parts of wild species of the genus Linum L. (Linaceae DC. ex Perleb). In recent decades, studies have been carried out on the component composition of not only flaxseed oil, but also cell cultures in vitro. This information is especially relevant for starting herbal materials derived from wild Linum species with small habitats or insignificant thicket density. Currently, information on the component composition and biological activity of oils or extracts has been obtained for 54 wild Linum species, belonging to 8 sections of 2 subgenera. In the aboveground and underground parts of the studied wild species of the genus Linum, the following sunstances were found: mucilage (in leaves and seeds), proteins (in seeds), vitamins (in leaves, seeds), alkaloids, flavonoids, saponins, coumarins, tannins, pigments, cyanogenetic glucosides and lignans. Essential oil was isolated from the aboveground flowering parts of L. perenne L., L. ausrtiacum L., L. hirsutum L., L. pubescens Willd. ex Schult., L. tenuifolium L., and L. catharticum L. The chemosystematics does not contradict the system we previously compiled based on morphological, anatomical and molecular characteristics of Linum species. Asian and European herbal medicine traditionally uses aboveground parts of L. perenne, L. baicalense Juz., L. altaicum Ledeb. ex Juz., L. olgae Juz. and L. heterosepalum Regel. The seeds and fatty oil exhibit coating, wound-healing, mild laxative, and analgesic properties. Extracts of wild-growing Linum species, as well as their individual components, have varied bioactivity like antibacterial, antimicrobial, antifungal, yeast-static, antiviral, cytotoxic, inhibitory, antitumor, anti-inflammatory, wound healing, and antioxidant. Species characterized by a high content of aryldihydronaphthalene-type lignans (a typical representative is justicidin B) have an antiviral effect and are effective against SARS-Cov-2. The yellow-flowered Linum species in the section Syllinum, with predominant aryltetralin lignans (e.g. 6-methoxypodophyllotoxin and its derivatives), exhibit anticancer activity. In the section Linopsis, L. corymbulosum Reichenb., which contains (–)-hinokinin, may prove to be an object of comprehensive research as a promising source of domestic herbal substances that can be used as adjunctive treatments in the anti-hepatitis B therapy.
Keywords
Linum дикорастущие представители компонентный состав биологическая активность
Date of publication
15.01.2024
Year of publication
2024
Number of purchasers
0
Views
44

References

  1. 1. Светлова А.А. 2009. Таксономический обзор рода Linum L. (Linaceae) флоры России и сопредельных государств. – Новости систематики высших растений. 41: 99–165. https://elibrary.ru/item.asp?id=15103291
  2. 2. Светлова А.А. 2007. Род Linum L. во флоре Сибири и Монголии. – В кн.: Проблемы ботаники Южной Сибири и Монголии: Материалы 6-й междунар. научно-практ. конф. (Барнаул, 25–28 октября 2007 г.). Барнаул. С. 54–59. http://elibrary.asu.ru/xmlui/handle/asu/262
  3. 3. Светлова А.А. 2008. Род Linum L. во флоре Центральной Азии. – В кн.: Проблемы ботаники Южной Сибири и Монголии: Материалы 7-й междунар. научно-практ. конф. (Барнаул, 21–24 октября 2008 г.). Барнаул. С. 299–302. http://elibrary.asu.ru/xmlui/handle/asu/274
  4. 4. Зеленцов С.В., Зеленцов В.С., Мошненко Е.В., Рябенко Л.Г. 2016. Современные представления о филогенезе и таксономии рода Linum L. и льна обыкновенного (Linum usitatissimum L.). – Масличные культуры. Научно- технический бюллетень Всероссийского научно-исследовательского института масличных культур. 1(165): 106–121. https://elibrary.ru/item.asp?id=26136641
  5. 5. Эллади Е.В. 1940. Сем. Linaceae (DC.) Dumort. – Льновые. – В кн.: Культурная флора СССР (Прядильные). М.; Л., Т. 5. Ч. 1. С. 97–206.
  6. 6. Chishty S., Bissu M. 2016. Health benefits and nutritional value of flaxseed – a review. – Indian J. Appl. Res. 6(1): 243–245. https://www.worldwidejournals.com/indian-journal-of-applied-research- (IJAR)/fileview/January_2016_1453271124__72.pdf
  7. 7. Светлова A.A., Яковлева O.В. 2010. Сравнительная характеристика слизепроизводящих клеток некоторых видов рода Linum (Linaceae) флоры России. – Раст. ресурсы. 46(2): 1–12. https://elibrary.ru/item.asp?id=17028755
  8. 8. Оводов Ю.С. 1998. Полисахариды цветковых растений: структура и физиологическая активность. – Биоорган. химия. 24(7): 483–501. http://www.rjbc.ru/arc/24/7/0483-0501.pdf
  9. 9. Naran R., Chen G., Carpita N.C. 2008. Novel Rhamnogalacturonan I and arabinoxylan polysaccharides of flax seed mucilage. – Plant Physiol. 148(1): 132–141. https://doi.org/10.1104/pp.108.123513
  10. 10. Пясяцкене А.П. 1994. Водорастворимые полисахариды растений, их локализация, биологическое и хозяйственное значение: Автореф. дис. ... канд. биол. наук. Вильнюс. 74 с. Расширенная антация на английском и литовском языках.
  11. 11. Оленников Д.Н., Танхаева Л.М. 2007. Исследование процесса экстракции полисахаридов семян льна (L. usitatissimum L.). – Химия раст. сырья. 4: 79–83. https://elibrary.ru/item.asp?id=9570134
  12. 12. Troshchynska Y., Bleha R., Synytsya A., Štětina J. 2022. Chemical composition and rheological properties of seed mucilages of various yellow- and brown-seeded flax (Linum usitatissimum L.) cultivars. – Polymers. 14(10): 2040. https://doi.org/10.3390/polym14102040
  13. 13. Dorrell D.G. 1970. Distribution of fatty acids within the seed of flax. – Can. J. Plant Sci. 50(1): 71–75. https://cdnsciencepub.com/doi/pdf/10.4141/cjps70-011
  14. 14. Жамалова Д.Н., Тожибаев К.Ш., Журамуродов И.Ж. 2020. Виды семейства Linaceae во флоре Узбекистана: распространение, химический состав и полезные свойства. – Хабарнома. Биологик тадқиқотлар (Научный вестник. Биологические исследования). 4(48): 16–27. https://www.ajbiological.uz/article/698420925089/pdf
  15. 15. Mueed A., Shibli S., Korma S.A., Madjirebaye P., Esatbeyoglu T., Deng Z. 2022. Flaxseed bioactive compounds: chemical composition, functional properties, food applications and health benefits-related gut microbes. – Foods. 11(20): 3307. https://doi.org/10.3390/foods11203307
  16. 16. Plaha N.S., Kaushik N., Awasthi S., Singh M., Kaur V., Langyan S., Kumar A., Kalia S. 2023. Comparison of nutritional quality of fourteen wild Linum species based on fatty acid composition, lipid health indices, and chemometric approaches unravelling their nutraceutical potential. – Heliyon. 9(11): e21192. https://doi.org/10.1016/j.heliyon.2023.e21192
  17. 17. Akter Y., Junaid M., Afrose S.S., Nahrin A., Alam M.S., Sharmin T., et al. 2021. A comprehensive review on Linum usitatissimum medicinal plant: its phytochemistry, pharmacology, and ethnomedicinal uses. – Mini Rev. Med. Chem. 21(18): 2801–2834. https://doi.org/10.2174/1389557521666210203153436
  18. 18. Oppedisano F., Macrì R., Gliozzi M., Musolino V., Carres C., Maiuolo J., et al. 2020. The anti-inflammatory and antioxidant properties of n-3 PUFAs: their role in cardiovascular protection. – Biomedicines. 8(9): 306. https://doi.org/10.3390/biomedicines8090306
  19. 19. Mowry K.C., Thomson-Parker T.L., Morales C., Fikes K.K., Stutts K.J., Leatherwood J.L., et al. 2022. Effects of crude rice bran oil and a flaxseed oil blend in young horses engaged in a training program. – Animals. 12(21): 3006. https://doi.org/10.3390/ani12213006
  20. 20. Madhusudhan K.T., Singh N. 1985. Effect of detoxification treatment on the physicochemical properties of linseed proteins. – J. Agricultur. Food Chem. 33(6): 1219–1222. https://doi.org/10.1021/jf00066a051
  21. 21. Yoon J.H., Jang W.Y., Park S.H., Kim H.G., Shim Y.Y., Reaney M.J.T., Cho J.Y. 2023. Anti-melanogenesis effects of a cyclic peptide derived from flaxseed via inhibition of CREB pathway. – Int. J. Mol. Sci. 24(1): 536. https://doi.org/10.3390/ijms24010536
  22. 22. Singh K.K., Mridula D., Rehal J., Barnwal P. 2011. Flaxseed: A potential source of food, feed and fiber. – Critical Reviews in Food Science and Nutrition. 51: 210–222. https://doi.org/10.3390/ijms24010536
  23. 23. Vassel B., Nesbitt L.L. 1945. The nitrogenous constituents of flaxseed. II. The isolation of a purified protein fraction. – J. Biol. Chem. 3(159): 571–584. https://doi.org/10.1016/S0021-9258 (17)41562-6
  24. 24. Li X., Li J., Dong S., Li Y., Wei L., Zhao C., et al. 2019. Effects of germination on tocopherol, secoisolarlciresinol diglucoside, cyanogenic glycosides and antioxidant activities in flaxseed (Linum usitatissimum L.). – Int. J. Food Sci. Technol. 54(7): 2346–2354. https://doi.org/10.1111/ijfs.14098
  25. 25. Rafieian-Kopaei M., Shakiba A., Sedighi M., Bahmani M. 2017. The analgesic and anti-inflammatory activity of Linum usitatissimum in Balb/c mice. – J. Evid. Based Complementary Altern. Med. 22(4): 892–896. https://doi.org/10.1177/2156587217717416
  26. 26. Ansari R., Zarshenas M.M., Dadbakhsh A.H. 2019. A review on pharmacological and clinical aspects of Linum usitatissimum L. – Curr. Drug. Discov. Technol. 16(2): 148–158. https://doi.org/10.2174/1570163815666180521101136
  27. 27. Poljšak N., Kreft S., Kočevar Glavač N. 2020. Vegetable butters and oils in skin wound healing: Scientific evidence for new opportunities in dermatology. – Phytother. Res. 34(2): 254–269. https://doi.org/10.1002/ptr.6524
  28. 28. Vlčková R., Sopková D., Andrejčáková Z., Lecová M., Fabian D., Šefčíková Z., et al. 2022. Dietary supplementation of flaxseed (Linum usitatissimum L.) alters ovarian functions of xylene-exposed mice. – Life. 12(8): 1152. https://doi.org/10.3390/life12081152
  29. 29. Sirotkin A.V. 2023. Influence of Flaxseed (Linum usitatissimum) on female reproduction. – Planta Med. 89(6): 608–615. https://doi.org/10.1055/a-2013-2966
  30. 30. Shama S.N., Sravanthi C., Pranitha D., Pavan D.P., Ravali V., Kumar P.S. 2022. Antidiabetic activity of ethanol extract of leaves of flax plant (Linum usitatissimum L.). – World J. Biol. Pharm. Health Sci. 12(03): 365–369. https://doi.org/10.30574/wjbphs.2022.12.3.0275
  31. 31. Mohamed H.H., Alomair N.A., Akhtar S., Youssef T.E. 2019. Eco-friendly synthesized α-Fe2O3/TiO2 heterojunction with enhanced visible light photocatalytic activity. – J. Photochem. Photobiol. A. 382: 111951. https://doi.org/10.1016/j.jphotochem.2019.111951
  32. 32. Mohamed H.H., Besisa D.H.A. 2023. Eco-friendly and solar light-active Ti-Fe2O3 ellipsoidal capsules’ nanostructure for removal of herbicides and organic dyes. – Environ. Sci. Pollut. Res. 30(7): 17765–17775. https://doi.org/10.1007/s11356-022-23119-0
  33. 33. Alfermann A., Petersen M., Fuss E. 2003. Production of natural products by plant cell biotechnology: Results, problems and perspectives. – In: Plant Tissue Culture. Springer, Vienna. P. 153–166. https://doi.org/10.1007/978-3-7091-6040-4_9
  34. 34. Hemmati S., Seradj H. 2016. Justicidin B: a promising bioactive lignan. – Molecules. 21(7): 820. https://doi.org/10.3390/molecules21070820
  35. 35. Kartal M., Konuklugil B., Indrayanto G., Alfermann A. 2004. Comparison of different extraction methods for the determination of podophyllotoxin and 6-methoxypodophyllotoxin in Linum species. – J. Pharm. Biomed. Analysis. 35(3): 441–447. https://doi.org/10.1016/j.jpba.2004.01.016
  36. 36. Ockendon D.J., Walters S.M. 1968. Linum L. – In: Flora Europaea. Cambridge. Vol. 2. P. 206–211.
  37. 37. McDill J., Repplinger M., Simpson B.B., Kadereit J.W. 2009. The phylogeny of Linum and Linaceae subfamily Linoideae, with implications for their systematics, biogeography, and evolution of heterostyly. – Syst. Bot. 34(2): 386–405. https://doi.org/10.1600/036364409788606244
  38. 38. Schmidt T.J., Hemmati S., Klaes M., Konuklugil B., Mohagheghzadeh A., Ionkova I., Fuss E., Alfermann A.W. 2010. Lignans in flowering aerial parts of Linum species – Chemodiversity in the light of systematics and phylogeny. – Phytochem. 71(14–15): 1714–1728. https://doi.org/10.1016/j.phytochem.2010.06.015
  39. 39. Schmidt T.J., Klaes M., Sendker J. 2012. Lignans in seeds of Linum species. – Phytochem. 82: 89–99. https://doi.org/10.1016/j.phytochem.2012.07.004
  40. 40. Юзепчук C.В. 1949. Сем. Льновые – Linaceae Dumort. – В кн.: Флора СССР. М.; Л. Т. 14. С. 84–146.
  41. 41. Науменко-Светлова А.А. 2016. Таксономический обзор видов секции Adenolinum (Rchb.) Juz. рода Linum L. (Linaceae). – Новости систематики высших растений. 47: 40–84. https://elibrary.ru/item.asp?id=27538770
  42. 42. Соколов П.Д. 1988. Сем. Linaceae S.F. Gray – Льновые. – В кн.: Растительные ресурсы СССР: Цветковые растения, их химический состав, использование; Т. 4. Семейства Rutaceae – Elaeagnaceae. Л. С. 27–29.
  43. 43. Хайдав Ц., Алтанчимэг Б., Варламова Т.С. 1985. Лекарственные растения в монгольской медицине. Изд. 2, переработанное. Улан-Батор. 380 с.
  44. 44. Velasco L., Goffman F. 2000. Tocopherol, plastochromanol and fatty acid patterns in the genus Linum. – Plant Syst. Evol. 221: 77–88. https://doi.org/10.1007/BF01086382
  45. 45. Станков С.С. 1944. Дикорастущие масличные растения СССР и их практическое использование. М. 78 с.
  46. 46. Шарапов Н.И. Новые жиромасличные растения / Под ред. М.М. Ильина. М.; Л., 1956. 111с.
  47. 47. Innes P., Gossweiler A., Jensen S., Tilley D., St. John L., Jones T., Kitchen S., Hulke B.S. 2022. Assessment of biogeographic variation in traits of Lewis flax (Linum lewisii) for use in restoration and agriculture. – AoB Plants. 14(2): plac005. https://doi.org/10.1093/aobpla/plac005
  48. 48. Повыдыш М.Н., Битюкова Н.В. 2010. Пор. Linales. – В кн.: Растительные ресурсы России: Дикорастущие цветковые растения, их компонентный состав и биологическая активность. Т. 3. Семейства Fabaceae–Apiaceae / Отв. ред. А.Л. Буданцев. СПб.; М. С. 111–112.
  49. 49. Vasilev N.P., Ionkova I. 2005. Cytotoxic activity of extracts from Linum cell cultures. – Fitoterapia. 76(1): 50–53. https://doi.org/10.1016/j.fitote.2004.10.008
  50. 50. Mohagheghzadeh A., Schmidt T.J., Alfermann A.W. 2002. Arylnaphthalene lignans from in vitro cultures of Linum austriacum. – J. Nat. Prod. 65(1): 69–71. https://doi.org/10.1021/np0102814
  51. 51. Hemmati S., Schmidt T.J., Fuss E. 2007. (+)-Pinoresinol/(–)-lariciresinol reductase from Linum perenne Himmelszelt involved in the biosynthesis of justicidin B. – FEBS Lett. 581(4): 603–610. https://doi.org/10.1016/j.febslet.2007.01.018
  52. 52. Jullian-Pawlicki N., Lequart-Pillon M., Huynh-Cong L., Lesur D., Cailleu D., Mesnard F., et al. 2015. Arylnaphthalene and aryltetralin-type lignans in hairy root cultures of Linum perenne, and the stereochemistry of 6-methoxypodophyllotoxin and one diastereoisomer by HPLC-MS and NMR spectroscopy. – Phytochem. Anal. 26(5): 310–319. https://doi.org/10.1002/pca.2565
  53. 53. Mascheretti I., Alfieri M., Lauria M., Locatelli F., Consonni R., Cusano E., et al. 2021. New insight into justicidin B pathway and production in Linum austriacum. – Int. J. Mol. Sci. 22(5): 2507. https://doi.org/10.3390/ijms22052507
  54. 54. Mohagheghzadeh A., Dehshahri S., Hemmati S. 2009. Accumulation of lignans by in vitro cultures of three Linum species. – Z. Naturforsch. CJ. Biosci. 64(1–2): 73–76. https://doi.org/10.1515/znc-2009-1-213
  55. 55. Konuklugil B., Ionkova I., Vasilev N., Schmidt T.J., Windhövel J., Fuss E., Alfermann A.W. 2007. Lignans form Linum species of sections Syllinum and Linum. – Nat. Prod. Res. 21(1): 1–6. https://doi.org/10.1080/14786410600798385
  56. 56. Asad B., Khan T., Gul F. Z., Ullah M.A., Drouet S., Mikac S., et al. 2021. Scarlet flax Linum grandiflorum (L.) in vitro cultures as a new source of antioxidant and anti-inflammatory lignans. – Molecules. 26(15): 4511. https://doi.org/10.3390/molecules26154511
  57. 57. Bolsheva N.L., Melnikova N.V., Dvorianinova E.M., Mironova L.N., Yurkevich O.Y., Amosova A.V., et al. 2022. Clarification of the position of Linum stelleroides Planch. – Plants. 11(5): 652. https://doi.org/10.3390/plants11050652
  58. 58. Klaes M., Ellendorff T., Schmidt T.J. 2009. 6-Methoxypodophyllotoxin-7-O-n-hexanoate, a new aryltetralin lignan ester from seeds of Linum flavum. – Planta Medica. 76(7): 719–721. https://doi.org/10.1055/s-0029-1240674
  59. 59. Broomhead A.J., Dewick P.M. 1990. Aryltetralin lignans from Linum flavum and Linum capitatum. – Phytochemistry. 29(12): 3839–3844. https://doi.org/10.1016/0031-9422 (90)85343-E
  60. 60. Zare Kh., Movafeghi A., Mohammadi S.A., Asnaashari S., Nazemiyeh H. 2014. New phenolics from Linum mucronatum subsp. orientale. – Bioimpacts. 4(3): 117–122. https://doi.org/10.15171/bi.2014.004
  61. 61. Vasilev N., Ebel R., Edrada R., Fuss E., Alfermann A.W., Ionkova I., et al. 2008. Metabolic profiling of lignan variability in Linum species of section Syllinum native to Bulgaria. – Planta Med. 74(3): 273–280. https://doi.org/10.1055/s-2008-1034298
  62. 62. Alfieri M., Mascheretti I., Kentsop R.A.D., Consonni R., Locatelli F., Mattana M., Ottolina G. 2021. Enhanced aryltetralin lignans production in Linum adventitious root cultures. – Molecules. 26(17): 5189. https://doi.org/10.3390/molecules26175189
  63. 63. Kranz K., Petersen M. 2003. β-Peltatin 6-O-methyltransferase from suspension cultures of Linum nodiflorum. – Phytochemistry. 64(2): 453–458. https://doi.org/10.1016/s0031-9422 (03)00196-1
  64. 64. Berim A., Spring O., Conrad J., Maitrejean M., Boland W., Petersen M. 2005. Enhancement of lignan biosynthesis in suspension cultures of Linum nodiflorum by coronalon, indanoyl-isoleucine and methyl jasmonate. – Planta. 222(5): 769–776. https://doi.org/10.1007/s00425-005-0019-9
  65. 65. Al-Qudah M.A. 2012. Chemical composition and antimicrobial activity of the essential oil of Linum pubescens growing wild in Jordan. –Nat. Prod. Res. 27(12): 1141–1144. https://doi.org/10.1080/14786419.2012.715291
  66. 66. Rogers C.M. 1984. Linaceae S.F. Gray. – In: North American Flora. Series II. Part 12. New York. 58 p.
  67. 67. Mouna R., Kabouche Z., Bensouici C., Broisat A., Ahmed A., Ghezzi C. 2023. Phytochemical profiling and antioxidant activity of Linum trigynum. – Nat. Prod. Res. https://doi.org/10.1080/14786419.2023.2218010
  68. 68. Bayindir U., Alfermann A.W., Fuss E. 2008. Hinokinin biosynthesis in Linum corymbulosum Reichenb. – Plant J. 55(5): 810–820. https://doi.org/10.1111/j.1365-313X.2008.03558.x
  69. 69. Баторова С.М., Яковлев Г.П., Асеева Т.А. 2013. Справочник лекарственных растений традиционной тибетской медицины. Новосибирск. 292 с.
  70. 70. Ligaa U., Davaasuren B., Ninjil N. 2009. Medicinal plants of Mongolia used in Western and Eastern Medicine. Moscow. 378 p.
  71. 71. Шретер А.И. 1975. Семейство Льновые – Linaceae. – В кн.: Лекарственная флора Советского Дальнего Востока. М. С. 169–170.
  72. 72. Садиков Х.Х. 2017. Дикорастущие лекарственные растения бассейна реки Искандер (Таджикистан). Душанбе. 136 с.
  73. 73. Котухов Ю.А., Данилова А.Н., Кубентаев С.А. 2015. Перечень лекарственных растений Казахстанского Алтая. Риддер. 156 с.
  74. 74. Tóth G., Horváti K., Kraszni M., Ausbüttel T., Pályi B., Kis Z., et al. 2023. Arylnaphthalene lignans with Anti-SARS-CoV-2 and antiproliferative activities from the underground organs of Linum austriacum and Linum perenne. – J. Nat. Prod. 86(4): 672–682. https://doi.org/10.1021/acs.jnatprod.2c00580
  75. 75. The effect of Linum album on restoration of bone fracture. Identifier IRCT20180610040049N7. International Clinical Trails Registry Platform. 2021 https://trialsearch.who.int/Trial2.aspx?TrialID=IRCT20180610040049N7
  76. 76. Çoban T., Konuklugil B. 2005. Free radical scavenging activity of Linum arboretum. – Pharm. Biol. 43(4): 370–372. https://doi.org/10.1080/13880200590951847
  77. 77. Mouna R., Broisat A., Ahmed A., Debiossat M., Boumendjel A., Ghezzi C., Kabouche Z. 2022. Antiproliferative activity, cell-cycle arrest, apoptotic induction and LC-HRMS/MS analyses of extracts from two Linum species. – Pharm. Biol. 60(1): 1491–1501. https://doi.org/10.1080/13880209.2022.2102196
  78. 78. Kentsop R.A.D., Consonni R., Alfieri M., Laura M., Ottolina G., Mascheretti I., Mattana M. 2022. Linum lewisii adventitious and hairy-roots cultures as lignan plant factories. – Antioxidants. 11(8): 1526. https://doi.org/10.3390/antiox11081526
  79. 79. Ташлиева И.И., Гладков Е.А. 2019. Разработка метода введения в культуру клеток и регенерации растений декоративных видов льна (Linum grandiflorum, Linum perenne). – Вестник биотехнологии и физико-химической биологии им. Ю.А. Овчинникова. 15(1): 22–24. https://www.elibrary.ru/item.asp?id=38251785
  80. 80. Гончарук Е.А., Борисова А.Ю., Живухина Е.А. 2019. Реакция клеток Linum grandiflorum L. на условия культивирования. – В сб.: Актуальные проблемы биологической и химической экологии. Сб. мат. VI Международной науч.-практ. конф.. Отв. ред. Д.Б. Петренко. С. 42–45. https://www.elibrary.ru/item.asp?id=37276111
  81. 81. Sasheva P., Ionkova I., Stoilova N. 2015. Methyl jasmonate induces enhanced podophyllotoxin production in cell cultures of thracian flax (Linum thracicum ssp. thracicum). – Nat. Prod. Commun. 10(7): 1225–1228. https://doi.org/10.1177/1934578X1501000722
  82. 82. Ибатулина Ю.В., Усманова Н.В. 2019. Биоморфологические особенности Linum czernjaëvii Klokov в природных сообществах и при интродукции в Донецком ботаническом саду. – В сб.: Изучение и сохранение биоразнообразия в ботанических садах и других интродукционных центрах. Материалы научной конференции с международным участием, посвященной 55-летию Донецкого ботанического сада. С. 156–162. https://www.elibrary.ru/item.asp?id=41433788
  83. 83. Морозова И.В., Радыгина В.И. 2016. Декоративные дикорастущие виды растений семейств: Liliaceae, Violaceae, Campanulaceae, Linaceae во флоре Орловской области. – Актуальные проблемы естественнонаучного образования, защиты окружающей среды и здоровья человека. 2(2): 267–272. https://www.elibrary.ru/item.asp?id=26231688
  84. 84. Ибатулина Ю.В., Остапко В.М. 2020. Динамика интродукционных ценопопуляций Linum nervosum Waldst. et Kit. в искусственных степных фитоценозах в Донецком ботаническом саду. – Промышленная ботаника. 20(1): 29–40. https://www.elibrary.ru/item.asp?id=43076263
  85. 85. Plants of the World Online. https://powo.science.kew.org/
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library