ОБНРастительные ресурсы Vegetation Resources

  • ISSN (Print) 0033-9946
  • ISSN (Online) 3034-5723

Особенности элементного состава некоторых видов макрофитов оз. Байкал

Код статьи
10.31857/S0033994624030086-1
DOI
10.31857/S0033994624030086
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 60 / Номер выпуска 3
Страницы
111-121
Аннотация
Представлены результаты определения содержания 21 химического элемента методом рентгенофлуоресцентного анализа в пяти видах макрофитов, собранных на западном побережье оз. Байкал в Иркутской области. Обсуждаются особенности элементного состава и накопления тяжелых металлов в высших водных растениях, произрастающих в заливах, испытывающих в летнее время рекреационную нагрузку. Установлено, что растения накапливают в значительных количествах Fe и Mn, некоторые виды (Elodea canadensis Michx. и Polygonum amphibium (L.) S.F. Grey) Sr, содержание Cu во всех исследованных видах макрофитов превышает ПДК. Полученные данные могут быть использованы для мониторинга состояния прибрежных экосистем.
Ключевые слова
Potamogeton pectinatus Potamogeton perfoliatus Myriophyllum spicatum Polygonum amphibium Elodea canadensis макрофиты элементный состав антропогенное воздействие оз. Байкал
Дата публикации
15.09.2024
Год выхода
2024
Всего подписок
0
Всего просмотров
45

Библиография

  1. 1. Государственный доклад «О состоянии и об охране окружающей среды в Иркутской области: 2021 г.» https://irkobl.ru/sites/ecology/2954%20Иркутск%20Природа%20Макет.pdf
  2. 2. Кривина Е. С., Тарасова Н. Т. 2018. Изменения таксономической структуры фитопланктона малых водоемов после прекращения техногенной эксплуатации / Е.С. Кривина, Н.Г. Тарасова. – Ученые записки Казанского университета. Серия: Естественные науки. 160(2): 292–307. https://www.elibrary.ru/item.asp?id=35740605
  3. 3. Анциферова Г. А., Русова Н. И., Шевырев С. Л., и др. 2020. Трансформации природных водоемов как эталон состояния водных экосистем особо охраняемых и антропогенно-нагруженных территорий. – Вестник Воронежского государственного университета. Серия: География. Геоэкология. (4): 53–60. https://doi.org/10.17308/geo.2020.4/3065
  4. 4. Азовский М. Г., Чепинога В. В. 2007. Флора высших растений озера Байкал. Иркутск. 157 с.
  5. 5. Лебедева О. А., Гарин Э. В., Беляков Е. А. 2015. Образование наземной формы у Batrachium circinatum (Sibth.) Spach. (Ranunculaceae Juss.) в условиях колеблющегося уровня воды. – Международный журнал прикладных и фундаментальных исследований. 12(8): 1442–1444. https://applied-research.ru/ru/article/view?id=8169
  6. 6. Верхозина В. А., Белых О. А., Верхозина Е. В. 2022. Изменение бактериального сообщества в литоральной зоне экосистемы южной части озера Байкал под воздействием антропогенной нагрузки. – Известия Байкальского гос. университета. 32(2): 397–406.
  7. 7. https://doi.org/10.17150/2500-2759.2022.32 (2).397-406
  8. 8. Квеститадзе Г. И., Хатисашвили Г. А., Садунишвили Т. А. 2005. Метаболизм антропогенных токсикантов в высших растениях. М. 199 с.
  9. 9. Белых О. А. 2014. Экологический мониторинг травянистого покрова Южной Сибири. Иркутск. 150 с.
  10. 10. Белых О. А., Глызин Л. А., Константинова Е. А., Глызина О. Ю. 2019. Фильтрационные возможности сообщества Lubomirskia baicalensis в условиях модельного эксперимента. – Известия Байкальского гос. университета. 29(2): 179–184. https://doi.org/10.17150/2500-2759.2019.29 (2).179-184
  11. 11. Ali S., Abbas Z., Rizwan M., Zaheer I. E., Yavaş İ., Ünay A., Abdel-Daim M. M., Bin-Jumah M., Hasanuzzaman M., Kalderis D. 2020. Application of floating aquatic plants in phytoremediation of heavy metals polluted water: A review. – Sustainability. 12(5): 1927. https://doi.org/10.3390/su12051927
  12. 12. Чупарина Е. В., Мартынов А. М. 2011. Применение недеструктивного РФА для определения элементного состава лекарственных растений. – Журнал аналитической химии. 66(4): 399–405. https://elibrary.ru/item.asp?id=16311412
  13. 13. Жигжитжапова С. В., Дыленова Е. П., Никитина Е. П. и др. 2022. Тяжелые металлы и жирнокислотный состав растений Ranunculus circinatus Sibth. (Ranunculaceae) из дельты реки Селенги. – Химия растительного сырья. (40): 171–179. https://doi.org/10.14258/jcprm.20220411286
  14. 14. Алекин О. А., Семенов А. Д., Скопинцев Б. А. 1973. Руководство по химическому анализу вод суши / Гл. упр. гидрометеорол. службы при Совете Министров СССР. Гидрохим. ин-т. 3-е изд. Л. 269 с.
  15. 15. Гребенщикова В. И., Кузьмин М. И., Демьянович В. М. 2024. Разнонаправленная динамика химического состава воды Байкальской экосистемы (Байкал, притоки, исток p. Ангарa). – Геология и геофизика. 65(3): 386–400. https://doi.org/10.15372/GIG2023162
  16. 16. Каницкая Л. В., Мокрый А. В., Белых О. А., Смирнова Е.В. 2015. Оценка экологической пригодности водотоков города Байкальска для развития туризма. – Фундаментальные исследования. (7–3): 463–467. https://fundamental-research.ru/ru/article/view?id=38759
  17. 17. Критерии оценки экологической обстановки территорий для выявления зон чрезвычайной экологической ситуации и зон экологического бедствия. (утв. Минприроды РФ 30.11.1992). https://docs.cntd.ru/document/901797511
  18. 18. Жигжитжапова С. В., Павлов В. Г., Ширеторова В. Г. и др. 2019. Содержание металлов в водных растениях оз. Гусиное. – Вода: химия и экология. 1–2: 34–40. https://elibrary.ru/item.asp?id=37613772
  19. 19. Кабата-Пендиас А., Пендиас Х. 1989. Микроэлементы в почвах и растениях. М. 439 с.
  20. 20. Ильин В. Б., Сысо А. И. 2001. Микроэлементы и тяжелые металлы в почвах и растениях Новосибирской области. Новосибирск: Изд-во СО РАН. 229 с.
  21. 21. Манасыпов Р. М., Кирпотин С. Н., Покровский O. С., Широкова Л. С. 2012. Особенности элементного состава озерных вод и макрофитов термокарстовых экосистем субарктики Западной Сибири. – Вестник Томского государственного университета. Биология. 3(19): 186–198. https://elibrary.ru/item.asp?id=18037927
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека