RAS BiologyРастительные ресурсы Vegetation Resources

  • ISSN (Print) 0033-9946
  • ISSN (Online) 3034-5723

Effect of temperature and storage duration on seed quality of three Hypericum (Hypericaceae) species

PII
10.31857/S0033994624020049-1
DOI
10.31857/S0033994624020049
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 60 / Issue number 2
Pages
59-74
Abstract
The effect of storage temperatures and duration on long-term storage of the seeds of three Hypericum species (Hypericaceae): H. perforatum L., H. maculatum Crantz., H. hirsutum L. was studied. The seed quality was assessed by laboratory germination and germination dynamics tests before storage, after one-month cryopreservation in liquid nitrogen, and then every 3 years over 18 years of storage at 5, —20 and –196 °C (in liquid nitrogen). The development of seedlings from the seeds that have been cryopreserved or cold-stored for 9 years and longer was evaluated. In all studied species, seed quality was not affected by the short-term cryopreservation. When stored at 5 °C, the seeds of H. perforatum retained their quality for 6 years, and of H. maculatum — for 15 years. The seeds of H. perforatum and H. maculatum stored at –20 °C retained their quality up to 6 years, and at –196 °C — along the entire 18 years of monitoring. The quality of H. hirsutum seeds that were placed for long-term storage after 18 months of room storage, deteriorated significantly after 6 years of storage at 5 and –20 °C. When additional lot of H. hirsutum fresh seeds (after 5 months of room storage) were placed for long-term storage, they retained quality at 5 °C for 9 years, and at –20 °C — for 12 years (the entire period of monitoring). In liquid nitrogen, the seeds of both H. hirsutum sample lots retained their quality for a long time. After 18 years of storage, in all three species, the best sowing qualities were observed in seeds stored at –196 °C, and the lowest — at –20 °C. In seeds stored under all above-mentioned temperatures, the germination ability changed insignificantly, and the germination rate decreased under storage at –20 and 5 °C. Under long-term storage at –20 °C, the seeds retained the ability for root emergence, but the size of the seedlings decreased; in H. hirsutum the number of normally developing seedlings also decreased, which means the faster ageing of epicotyl meristem than the radicle meristem. An increase in the duration of the preliminary room storage led to an accelerated ageing of seeds stored both at 5 and at –20 °C. Storage at –196 °C significantly decreased seed ageing, regardless of the duration of the preliminary room storage. Seeds stored in liquid nitrogen are more sensitive to the swelling and germination conditions than those stored at 5 and –20 °C. The desiccation and ageing resistance of H. hirsutum seeds is lower than that of H. perforatum and H. maculatum. It is suggested to use seed recovery after short-term cryopreservation under suboptimal conditions as a test for seed resistance to desiccation and suitability for long-term storage. Recommendations for the studied species’ seed quality monitoring during their long-term storage are given.
Keywords
Hypericum семена длительное хранение старение температура хранения криоконсервация всхожесть динамика прорастания развитие проростков
Date of publication
15.05.2024
Year of publication
2024
Number of purchasers
0
Views
50

References

  1. 1. Walters C., Wheeler L. M., Stanwood P. C. 2004. Longevity of cryogenically stored seeds. — Cryobiol. 48(3): 229—244. https://doi.org/10.1016/j.cryobiol.2004.01.007
  2. 2. Левицкая Г. Е. 2015. Влияние температуры хранения на жизнеспособность семян дикорастущих видов. 2. Семена с физиологическим покоем на примере видов рода Campanula (Campanulaceae). — Раст. ресурсы. 51(1): 38—51. https://elibrary.ru/item.asp?id=22740094
  3. 3. Ellis R. H., Roberts E. H. 1980. Improved equations for the prediction of seed longevity. — Ann. Bot. 45(1): 13—30. https://doi.org/10.1093/oxfordjournals.aob.a085797
  4. 4. Treuren R., Bas N., Kodde J., Groot S. P. C., Kik C. 2018. Rapid loss of seed viability in ex situ conserved wheat and barley at 4 °C as compared to –20 °C storage. — Conserv. Physiol. 6(1): coy033. https://doi.org/10.1093/conphys/coy033
  5. 5. Solberg S. Ø., Yndgaard F., Andreasen C., Bothmer R., Loskutov I. G., Asdal Å. 2020. Long-Term Storage and Longevity of Orthodox Seeds: A Systematic Review. — Front Plant Sci. 11: 1007. https://doi.org/10.3389/ fpls.2020.01007
  6. 6. Walsh D. G. F., Waldren S., Martin J. R. 2003. Monitoring seed viability of fifteen species after storage in the Irish threatened plant genebank. — Biol. Environ. 103B(2): 59—67. https://doi.org/10.1353/bae.2003.a809883
  7. 7. Pérez-García F., Huertas M., Mora E., Peña B., Varela F., González-Benito M. E. 2006. Hypericum perforatum L. seed germination: interpopulation variation and effect of light, temperature, presowing treatments and seed desiccation. — Genet. Resour. Crop Evol. 53(6): 1187—1198. https://doi.org/10.1007/s10722-005-2012-3
  8. 8. Nürk N. M., Blattner F. R. 2010. Cladistic analysis of morphological characters in Hypericum (Hypericaceae). — Taxon. 59(5): 1495—1507. https://doi.org/10.1002/tax.595014
  9. 9. Robson N. K. B. 1996. Studies in the genus Hypericum L. (Guttiferae). 6. Sections 20. Myriandra to 28. Elodes. — Bull. Br. Museum Nat. Hist. 26(2): 75—271. https://www.biodiversitylibrary.org/page/2349861
  10. 10. Лекарственные растения: справ. пособие. 1992. М. 398 с.
  11. 11. Губанов И. А., Киселева К. В., Новиков В. С. 1993. Дикорастущие полезные растения. 2-е изд. М. 300 с.
  12. 12. Bruňáková K., Čellárová E. 2016. Conservation Strategies in the Genus Hypericum via Cryogenic Treatment. — Front. Plant Sci. 7: 558. https://doi.org/10.3389/fpls.2016.00558
  13. 13. British Herbal Pharmacopoeia. 4th edition. Surrey. 212 p.
  14. 14. Upton R., Cott J., Williamson E., Graff A. St. 1997. St. John’s wort. Hypericum perforatum. Quality control, analytical and therapeutic monograph. American Herbal Pharmacopoeia and Therapeutic Compendium. Texas. 32 p.
  15. 15. European Pharmacopoeia. 2008. European Pharmacopoeia, 6th Edn. Strasbourg: Council of Europe.
  16. 16. Зверобоя трава. Hyperici herba. ФС.2.5.0015.15. 2018. — В: Государственная фармакопея Российской Федерации XIV. Т. IV. М. С. 6074—6083. https://pharmacopoeia.regmed.ru/pharmacopoeia/izdanie-14/2/2-5/zveroboya-trava-hyperici-herba/
  17. 17. Akgӧz J. 2015. The effects of Hypericum (Hypericaceae) species on microorganisms. A review. — Int. Res. J. Pharm. 6(7): 390—399. https://doi.org/10.7897/2230-8407.06781
  18. 18. Буданцев А. Л., Приходько В. А., Варганова И. В., Оковитый С. В. 2021. Биологическая активность Hypericum perforatum L. (Hypericaceae): обзор. — Фармация и фармакология. 9(1): 17—31. https://doi.org/10.19163/2307-9266-2021-9-1-17-31
  19. 19. Левашова О. Л., Гапоненко В. П. 2016. Полісахаридний комплекс звіробою шорсткого (Hypericum hirsutum L.). — Теоретичні та практичні аспекти дослідження лікарських рослин: матеріали ІІ міжнар. наук.-практ. Internet-конф., м. Харків, 21—23 берез. 2016. Харкiв. С. 149—150. http://dspace.nuph.edu.ua/handle/123456789/9391
  20. 20. Ņivković M. Z., Radulović N. S. 2018. The chemical composition of the essential oil of Hypericum hirsutum L. from Suva planina (SE Serbia). — FU Phys. Chem. Tech. 16(1): 155. http://casopisi.junis.ni.ac.rs/index.php/FUPhysChemTech/article/view/4341
  21. 21. Хукстра Ф. А., Головина Е. А. 1999. Поведение мембран при дегидратации и устойчивость ангидробиотических организмов к обезвоживанию. — Физиология растений. 46(3): 347—361.
  22. 22. Genebank Standards. 1994. Food and Agriculture Organization of the United Nations, Rome, International Plant Genetic Resources Institute, Rome. 13 p. https://www.fao.org/3/aj680e/aj680e.pdf
  23. 23. Buitink J., Leprince O., Hemminga M. A., Hoekstra F. A. 2000. Molecular mobility in the cytoplasm: An approach to describe and predict lifespan of dry germplasm. — PNAS. 97(5): 2385—2390. https://doi.org/10.1073/pnas.040554797
  24. 24. Мельникова Т. М. 1969. К биологии прорастания семян некоторых видов зверобоя. — Бюлл. ГБС АН СССР. 73: 87—90. https://www.gbsad.ru/doc/biulleten_gbs_1969_073.pdf
  25. 25. Smolikova G., Leonova T., Vashurina N., Frolov A., Medvedev S. 2021. Desiccation Tolerance as the Basis of Long-Term Seed Viability. — Int. J. Mol. Sci. 2(1): 101. https://doi.org/10.3390/ijms22010101
  26. 26. Waterworth W. M., Masnavi G., Bhardwaj R. M., Jiang Q., Bray C. M., West C. E. 2010. A plant DNA ligase is an important determinant of seed longevity. — Plant J. 63(5): 848—860. https://doi.org/10.1111/j.1365-313X.2010.04285.x
  27. 27. Левицкая Г. Е. 2014. Влияние температуры хранения на жизнеспособность семян дикорастущих видов. 1. Семена с вынужденным покоем и неглубоким физиологическим покоем. — Раст. ресурсы. 50(4): 30—44. https://elibrary.ru/item.asp?id=22260668
  28. 28. Белоус А. М., Грищенко В. И. 1994. Криобиология. Киев. 430 с.
  29. 29. Николаева М. Г., Разумова М. В., Гладкова В. Н. 1985. Справочник по проращиванию покоящихся семян. Л. 348 с.
  30. 30. Wawrzyniak M., Michalak M., Chmielarz P. 2020. Effect of different conditions of storage on seed viability and seedling growth of six European wild fruit woody plants. — Ann. Forest Sci. 77: 58. https://doi.org/10.1007/s13595-020-00963-z
  31. 31. Попцов А. В., Некрасов В. И., Иванова И. А. 1981. Очерки по семеноведению. М. 112 с.
  32. 32. Probert R., Adams J., Coneybeer J., Crawford A., Hay F. 2007. Seed quality for conservation is critically affected by pre-storage factors. — Aust. J. Bot. 55(3): 326—335. https://doi.org/10.1071/BT06046
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library