RAS BiologyРастительные ресурсы Vegetation Resources

  • ISSN (Print) 0033-9946
  • ISSN (Online) 3034-5723

Calendula officinalis (Asteraceae) as a radiosensitizer in radiotherapy of tumors

PII
10.31857/S0033994624010089-1
DOI
10.31857/S0033994624010089
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 60 / Issue number 1
Pages
112-124
Abstract
The effect of aqueous-alcoholic tincture of Сalendula officinalis L. (Asteraceae) on tumor cells of different species and tissue origin was studied. Its potential as a radiosensitizer in combination with γ-radiation was determined. It has been established that C. officinalis tincture causes the death of tumor cells regardless of their p53 and p21 status. C. officinalis tincture has antioxidant properties, but for cells with active p21 it exhibits radiosensitizing rather than radioprotective properties. For cells lacking p21, C. officinalis tincture is a radioprotector, so the cell death is p21 mediated. A study of the radiosensitizing properties of C. officinalis was carried out on a mouse melanoma model in vivo. In combination with γ-radiation, it led to a significant inhibition of tumor growth (by 47%), as compared to irradiation only. The significant radiosensitizing effect and capability of overcoming the tumor cells resistance induced by p53 inactivation make C. officinalis tincture promising as an add-on to radiotherapy, allowing to reduce the effective radiation dose 1.7 times.
Keywords
Calendula officinalis радиотерапия меланома растительные радиосенсибилизаторы
Date of publication
15.01.2024
Year of publication
2024
Number of purchasers
0
Views
51

References

  1. 1. Olennikov D.N., Kashchenko N.I. 2022. Marigold metabolites: Diversity and separation methods of Calendula genus phytochemicals from 1891 to 2022. – Molecules. 27(23): 8626. https://doi.org/10.3390/molecules27238626
  2. 2. Jadoon S., Karim S., Hassham M., Asad H.B., Akram M.R., Khan A.K, et al. 2015. Antiaging potential of phytoextract loaded-pharmaceutical creams for human skin cell longetivity. – Oxid. Med. Cell. Longev. Article ID709628. https://doi.org/10.1155/2015/709628
  3. 3. Nicolaus C., Junghanns S., Hartmann A., Murillo R., Ganzera M., Merfort I. 2017. In vitro studies to evaluate the wound healing properties of Calendula officinalis extracts. – J. Ethnopharmacol. 196: 94–103. https://doi.org/10.1016/j.jep.2016.12.006
  4. 4. Dinda M., Mazumdar S., Das S., Ganguly D., Dasgupta U.B., Dutta A., et al. 2016. The water fraction of Calendula officinalis hydroethanol extract stimulates in vitro and in vivo proliferation of dermal fibroblasts in wound healing. – Phytother. Res. 30(10): 1696–1707. https://doi.org/10.1002/ptr.5678
  5. 5. Preethi K.C., Kuttan G., Kuttan R. 2009. Anti-inflammatory activity of flower extract of Calendula officinalis Linn and its possible mechanism of action. – Indian J. Exp. Biol. 47(2): 113–120. https://nopr.niscpr.res.in/handle/123456789/3072
  6. 6. Preethi K.C., Kuttan R. 2009. Hepato and reno protective action of Calendula officnalis L. flower extract. – Indian J. Exp. Biol. 47(3): 163–168. https://nopr.niscpr.res.in/handle/123456789/3293
  7. 7. Barajas-Farias L.M., Pérez-Carreón J.I., Arce-Popoca E., Fattel-Fazenda S., Alemán-Lazarini L., Hernández-García S., et al. 2006. A dual and opposite effect of Calendula officinalis flower extract: chemoprotector and promoter in a rat hepatocarcinogenesis model. – Planta Med. 72(3): 217–21. https://doi.org/10.1055/s-2005–916196
  8. 8. Giostri G.S., Novak E.M., Marcelo Buzzi, Guarita-Souza L.C. 2022. Treatment of acute wounds in hand with Calendula officinalis L.: A randomized trial. – Tissue Barriers. 10(3): 1994822. https://doi.org/10.1080/21688370.2021.1994822
  9. 9. Chandran P.K., Kuttan R. 2008. Effect of Calendula officinalis flower extract on acute phase proteins, antioxidant defense mechanism and granuloma formation during thermal burns. – Clin. Biochem. Nutr. 43(2): 58–64. https://doi.org/10.3164/jcbn.2008043
  10. 10. Givol O., Kornhaber R., Visentin D., Cleary M., Haik J., Harats M. 2019. A systematic review of Calendula officinalis extract for wound healing. – Wound Repair Regen. 27(5): 548–561. https://doi.org/10.1111/wrr.12737
  11. 11. Pommier P., Gomez F., Sunyach M.P., D’Hombres A., Carrie C., Montbarbon X. 2004. Phase III randomized trial of Calendula officinalis compared with trolamine for the prevention of acute dermatitis during irradiation for breast cancer. – J. Clin. Oncol. 22(8): 1447–1453. https://doi.org/10.1200/JCO.2004.07.063
  12. 12. Simões F.V., Santos V.O., da Silva R.N., da Silva R.C. 2020. Effectiveness of skin protectors and Calendula officinalis for prevention and treatment of radiodermatitis: an integrative review. – Rev. Bras. Enferm. 73(suppl 5): e20190815. https://doi.org/10.1590/0034-7167-2019-0815
  13. 13. Jiménez-Medina E., Garcia-Lora A., Paco L., Algarra I., Collado A., Garrido F. 2006. A new extract of the plant Calendula officinalis produces a dual in vitro effect: cytotoxic anti–tumor activity and lymphocyte activation. – BMC Cancer. 6: 119. https://doi.org/10.1186/1471-2407-6-119
  14. 14. Preethi K.C., Siveen K.S., Kuttan R., Kuttan G. 2010. Inhibition of metastasis of B16F-10 melanoma cells in C57BL/6 mice by an extract of Calendula officnalis L. flowers. – Asian Pac. J. Cancer Prev. 11(6): 1773–1779. https://journal.waocp.org/article_25449.html
  15. 15. Hormozi M., Gholami M., Babaniazi A., Gharravi A.M. 2019. Calendula officinalis stimulate proliferation of mouse embryonic fibroblasts via expression of growth factors TGFβ1 and bFGF. – Inflamm. Regen. 39: 7. https://doi.org/10.1186/s41232-019-0097-x
  16. 16. Cordova C.A.S., Siqueira I.R., Netto C.A., Yunes R.A., Volpato A.M., Filho V.C., et al. 2002. Protective properties of butanolic extract of the Calendula officinalis L. (marigold) against lipid peroxidation of rat liver microsomes and action as free radical scavenger. – Redox Rep. 7(2): 95–102. https://doi.org/10.1179/135100002125000325
  17. 17. Шишкина Л.Н., Мазалецкая Л.И., Смирнова А.Н., Швыдкий В.О. 2021. Ингибирующая эффективность липидного компонента растительных объектов в зависимости от полярности элюента. – Биофизика. 66(3): 482–488. https://doi.org/10.31857/S000630292103008X
  18. 18. Цепалов В.Ф., Харитонова А.А., Гладышев Г.П., Эммануэль Н.М. 1977. Определение констант скорости и коэффициентов ингибирования фенолов–антиоксидантов с помощью модельной цепной реакции. – Кинетика и катализ. 18(5): 1261–1267.
  19. 19. Цепалов В.Ф., Шляпинтох В.Я. 1962. Константы скорости элементарных реакций процесса окисления этилбензола молекулярным кислородом. – Кинетика и катализ. 6(3): 870–876.
  20. 20. Donehower L.A., Soussi T., Korkut A., Liu Y., Schultz A., Cardenas M., et al. 2019. Integrated Analysis of TP53 Gene and Pathway Alterations in The Cancer Genome Atlas. – Cell Rep. 28(5): 1370–1384.E5. https://doi.org/10.1016/j.celrep.2019.07.001
  21. 21. Kuang Y., Kang J., Li H., Liu B., Zhao X., Li L., et al. 2021. Multiple functions of p21 in cancer radiotherapy. – J. Cancer Res. Clin. Oncol. 147(4): 987–1006. https://doi.org/10.1007/s00432-021-03529-2
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library