- PII
- 10.31857/S0033994623020061-1
- DOI
- 10.31857/S0033994623020061
- Publication type
- Status
- Published
- Authors
- Volume/ Edition
- Volume 59 / Issue number 2
- Pages
- 129-136
- Abstract
- Abstract —Thymus mongolicus (Ronniger) Ronniger (Lamiaceae) is a valuable medicinal and aromatic plant. T. mongolicus is the implicitly polycentric dwarf shrub widely distributed in different environments of Tuva. The breeding system of T. mongolicus was studied in three steppe and meadow habitats. Statistically significant differences between bisexual and pistillate flowers of T. mongolicus were established based on three morphological features of the flower: the length of the upper lip of the corolla and the length of stamen filament of the upper and lower stamens (p 0.0001–0.016). The length of the upper lip of corolla of the bisexual flower is 1.3 times longer than that of the pistillate flower; the lengths of stamen filaments of upper and lower stamens of bisexual flowers are 3.7 and 4.1 times longer (respectively) than the length of staminodes of pistillate flowers. The stamens of the pistillate flowers are underdeveloped and do not form fertile pollen. The frequency of females occurrence in coenopopulations is insignificant (2.1–3.4% of the total number of generative individuals), and females are absent in some phytocoenoses. Reproduction of T. mongolicus occurs both by seed and vegetatively. The distribution of T. mongolicus individuals by ontogenetic groups showed that both pregenerative individuals (33.0–38.1% of the total number of individuals) and generative individuals (31.2–63.7%) are well represented in cenopopulations. Analysis of the ratio of genets and ramets in the steppe petrophyte coenopopulation showed the significant predominance of the vegetative individuals in all ontogenetic groups: in general, there are 3.7 times more ramets than genets. In the meadow coenopopulation, the germination of seeds and the spread of generative individuals is prevented by the relatively high total projective cover of the herbage. It can be assumed that the low occurrence of T. mongolicus females is a-ssociated with a low seed renewal and specificity of offspring inheritance.
- Keywords
- <i>Thymus mongolicus</i> ценопопуляции гинодиэция соотношение полов генеты раметы Республика Тыва
- Date of publication
- 01.04.2023
- Year of publication
- 2023
- Number of purchasers
- 0
- Views
- 47
References
- 1. Дикорастущие полезные растения России. 2001. СПб. 663 с.
- 2. Dommée B., Assouad M.W., Valdeyron G. 1978. Natural selection and gynodioecy in Thymus vulgaris L. – Bot. J. Linn. Soc. 77(1): 17–28. https://doi.org/10.1111/j.1095-8339.1978.tb01369.x
- 3. Гогина Е.Е. 1990. Изменчивость и формообразование в роде Тимьян. М. 208 с.
- 4. Thompson J.D., Rolland A.G., Prugnolle F. 2002. Genetic variation for sexual dimorphism in flower size within and between populations of gynodioecious Thymus vulgaris. – J. Evol. Biol. 15(3): 362–372. https://doi.org/10.1046/j.1420-9101.2002.00407.x
- 5. Гогина Е.Е. 1975. Род чабрец (тимьян) – Thymus L. – В кн.: Биологическая флора Московской области. Вып. 2. С. 137–168.
- 6. Manicacci D., Atlan A., Rossello J.A.E., Couvet D. 1998. Gynodioecy and reproductive trait variation in three Thymus species (Lamiaceae). – Int. J. Plant Sci. 159(6): 948–957. https://doi.org/10.1086/314085
- 7. Гордеева Н.И., Пшеничкина Ю.А. 2013. Особенности половой дифференциации Thymus marschallianus (Lamiaceae) в условиях лесостепи Новосибирской области. – Раст. ресурсы. 49(3): 297–303. https://www.elibrary.ru/item.asp?id=19139453
- 8. Демьянова Е.И. 2016. Половая структура популяций некоторых гинодиэцичных видов Thymus L. (Lamiaceae). – Вестник Пермского ун-та. Серия: Биология. 2: 96–101.
- 9. Belhassen E., Dommée B., Atlan A., Gouyon P.H., Pomente D., Assouad M.W., Couvet D. 1991. Complex determination of male sterility in Thymus vulgaris L.: genetic and molecular analysis. – Theor. Appl. Genet. 82(2): 137–143. https://doi.org/10.1007/BF00226204
- 10. Stakelien Ė.V., Ložien Ė.K. 2014. Gynodioecy in Thymus pulegioides L., T. serpyllum L., and their hybrid T. × oblongifolius Opiz (Lamiaceae): Flower size dimorphism, female frequency, and effect of environmental factors. – Plant Biosyst. 148(1): 49–57. https://doi.org/10.1080/11263504.2012.756435
- 11. Talovskaya E.B., Cheryomushkina V.A. 2017. State of Thymus coenopopulations in the Southern Siberia. – Russ. J. Ecosyst. Ecol. 2(3). https://doi.org/10.21685/2500-0578-2017-3-4
- 12. Годин В.Н. 2011. Половой полиморфизм видов растений подкласса Lamiidae в Сибири. Обзор литературы. – Раст. мир Азиатской России. 2(8): 49–53. https://www.elibrary.ru/item.asp?id=17097627
- 13. Колегова Е.Б. 2012. Жизненные формы видов рода Thymus L. в Республике Хакасия. – В сб.: Растительный мир и его охрана: Материалы международной научной конференции, посвященной 80-летию Института ботаники и фитоинтродукции. Алматы: LEM. С. 380–381.
- 14. Talovskaya E.B., Komarevtseva E.K. 2021. Development of the dwarf shrub Thymus mongolicus (Lamiaceae) in the conditions of Southern Siberia. – BIO Web Conf. 31: 00027. https://doi.org/10.1051/bioconf/20213100027
- 15. Доронькин В.М. 1997. Thymus L. – тимьян, богородская трава. – В кн.: Флора Сибири. Pyrolaceae – Lamiaceae (Labiatae). Новосибирск. Т. 11. С. 205–220.
- 16. Клоков М.В. 1954. Род Thymus L. – В кн.: Флора СССР. Под ред. Б.К. Шишкина. М.; Л. Т. 21. С. 470–591.
- 17. Гланц С. Медико-биологическая статистика. Перевод с англ. М. 1998. 459 с.
- 18. Asikainen E., Mutikainen P. 2003. Female frequency and relative fitness of females and hermaphrodites in gynodioecious Geranium sylvaticum (Geraniaceae). – Am. J. Botany. 90(2): 226–234. https://doi.org/10.3732/ajb.90.2.226
- 19. Ценопопуляции растений (основные понятия и структура). 1976. М. 216 с.
- 20. Таловская Е.Б., Черемушкина В.А., Асташенков А.Ю., Гордеева Н.И. 2023. Состояние ценопопуляций Thymus mongolicus (Lamiaceae) в зависимости от экологических условий. – Бот. журн. 108(1): 3–12. https://www.elibrary.ru/item.asp?id=50434354
- 21. Charlesworth D., Laporte V. 1998. The male-sterility polymorphism of Silene vulgaris: analysis of genetic data from two populations and comparison with Thymus vulgaris. – Genetics. 150(3): 1267–1282. https://doi.org/10.1093/genetics/150.3.1267
- 22. McCauley D.E., Olson M.S., Emery S.N., Taylor D.L. 2000. Population Structure Influences Sex Ratio Evolution in a Gynodioecious Plant. – Am. Nat. 155(6): 814–819. https://doi.org/10.1086/303359
- 23. Dufaÿ M., Touzet P., Maurice S., Cuguen J. 2007. Modelling the maintenance of male-fertile cytoplasm in a gynodioecious population. – Heredity. 99(3): 349–356. https://www.nature.com/articles/6801009
- 24. Mollion M., Ehlers B.K., Figuet E., Santoni S., Lenormand T., Maurice S., Galtier N., Bataillon T. 2018. Patterns of genome-wide nucleotide diversity in the gynodioecious plant Thymus vulgaris are compatible with recent sweeps of cytoplasmic genes. – Genome Biol. Evol. 10(1): 239–248. https://doi.org/10.1093/gbe/evx272
- 25. Bailey M.F., Delph L.F. 2007. A field guide to models of sex-ratio evolution in gynodioecious species. – Oikos. 116(10): 1609–1617. https://doi.org/10.1111/j.0030-1299.2007.15315.x
- 26. Couvet D., Ronce O., Gliddon C. 1998. The maintenance of nucleocytoplasmic polymorphism in a metapopulation: the case of gynodioecy. – Am. Nat. 152(1): 59–70. https://doi.org/10.1086/286149